Шестнадцатая Всероссийская Открытая конференция «СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА (Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов)»

Верификация алгоритма определения зон сжатия ледяного покрова моря по спутниковым данным на примере банки Кашеварова

Алексанина М. Г., Липов И.М. Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук Дальневосточный федеральный университет, Владивосток, Россия

(j)

Расчет сжатия льда на основе скоростей дрейфа льда

Дрейф льда

 Расчет скоростей дрейфа льда, рассматриваемых как скорости перемещений маркеров, которые определяются по последовательности изображений с метеорологических спутников в различных диапазонах спектра

Сжатие

льда

 Локальный показатель сжатия/разрежения рассматривается как скорость изменения расстояния между отдельными элементами ледяного покрова моря. Определяется двумя параметрами — скалярной величиной и направлением оси сжатия/разрежения.

Дрейф льда - расчет скоростей перемещений ледового покрова моря

Использование критерия априорной оценки точности примерно в 2 раза уменьшило число неверно отбракованных скоростей, при этом в 1.5-2 раза увеличил число отбракованных правильно.

Рассчитывается скорость перемещения ледовых полей по временной последовательности спутниковых изображений на основе методики, изложенной в работе

- Алексанин А.И., Алексанина М.Г., Карнацкий А.Ю. Автоматический расчет скоростей перемещений ледовых полей \\ Современные проблемы дистанционного зондирования Земли из космоса.2011.Т.8. №2.С.9-17.

- 8 ×

В основе расчета скоростей – метод максимальной кросс-корреляции (МКК)

1 Изображение

Скорость перемещения

$$v = \frac{\left[\left(p_{\max}\Delta x\right)^2 + \left(q_{\max}\Delta y\right)^2\right]^{1/2}}{\Delta t}$$

Угол направления перемещения

$$\theta = \arctan(q_{\max}\Delta y / p_{\max}\Delta x)$$

Сущность модификации –отбраковка векторов по критерию «априорной точности»

Окно-шаблон

Если R*<Р, перемещение удовлетворяет нас с заданной точностью, иначе - вектор удаляется

Модифицированный критерий сходства изображений

мера похожести $K = r^{\alpha} \cdot E^{\beta} \cdot S^{\gamma}$

Коэффициент корреляции Г(р,q)

Нормированное рассогласование яркостей *Е(р,q)*:

где *I* – яркость пиксела

$$E(p,q) = 1 - \frac{1}{e_1 + e_2} \times \sum_{j} \sum_{i} |[I(i,j) - \bar{I}1] - [I(i+p,j+q) - \bar{I}2]|$$

$$e_1 = \sum_{j} \sum_{i} |I(i,j) - \bar{I}1| \qquad e_2 = \sum_{j} \sum_{i} |I(i+p,j+q) - \bar{I}2|$$
Дисперсия **S**

$$S(p,q) = \frac{2\sigma_1 \sigma_2}{1 - \sigma_2}$$

 $S(p,q) = \frac{1}{\sigma_1^2 + \sigma_2^2}$

Скорость дрейфа по паре спутниковых изображений с интервалом в 24 часа

Спутниковые изображения (радиометр MODIS) Охотского моря за 5 и 6 апреля 2010 Пространственное разрешение ~ 250m временной интервал ∆t ~ 24h Подход к расчету сжатия льда на основе скоростей дрейфа*

А. И. Алексанин, М.Г. Алексанина, А.Ю. Карнацкий

Расчет сжатия ледяного покрова моря по спутниковым изображениям // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 7. С. 210–224

Локальный показатель сжатия и разрежения ледяного покрова моря рассматривается как скорость изменения расстояния между отдельными элементами ледяного покрова моря S₀ и S₁. Определяется двумя параметрами — скалярной величиной и направлением оси сжатия/разрежения.

- а) Расчет локального сжатия Ск_і;
- b) расчет сжатия на основе локальных оценок;
- с) «роза» локальных сжатий в окрестности точки расчета с радиусами R и R+AR.

С

Красная линия – направление сжатия, зеленая – направление растяжения.

<u> Локальное сжатие –</u>

изменчивость вектора R^k со временем: $C^k_{ij}=(S_1-S_0)/\Delta t$, (1) Δt – временной интервал между изображениями, S_0 , S_1 – длины R^k .

Ориентация оси сжатия.

Угол направления φ : C^φ = min 1/NΣC^k·(r^φ·r^k),

φ

Скалярная величины сжатия:

 $C^{-}=1/n*\sum C^{k}/\cos(\phi^{-}-\phi^{k}) \qquad |\phi^{-}-\phi^{k}| < \Delta \phi$

Относительная ошибка расчета сжатия:

 $\Delta C^{-}/C^{-} = \sigma_{C}^{-*} t_{f,0.95} / \sqrt{n/C^{-}} = \alpha, \qquad t_{f,0.95} - \text{Student coefficient for } f=n-1$

<u>Оценка ошибки расчета направления $\Delta \phi^-$:</u> C⁻ - C⁻·cos $\Delta \phi^- = \alpha C^- => \Delta \phi^- = \arccos(1-\alpha)$

Пример визуально наблюдаемого сжатия

ледового покрова моря на фрагментах спутниковых изображений MODIS\AQUA: слева — за 5 апреля 2010, справа — за 6 апреля 2010 года.

Красные отрезки — статистически значимые оси сжатия

Желтые вектора — скорости ветра,

голубые вектора — автоматически рассчитанные скорости дрейфа.

Тонкими желто-красными линиями обозначен допустимый створ ориентации оси сжатия *∆φ*⁻.

Сопоставление

визуального и автоматического подходов

Сравнение показателей относительного сжатия визуально-ручного подхода и автоматического. (Синим цветом – сжатие визуального – ручным подходом, красным цветом – сжатие автоматического подхода)

Красным цветом показатели сжатия льда, График соответствия сжатия, рассчитанного визуальнорассчитанные автоматическим методом, ручным методом и автоматическим методом, для желтым цветом - расчет визуально-ручным методом. сопоставимых по длине отрезках. Длины отрезков между маркерами примерно равны.

Результат автоматического выявления зон сжатий (красный цвет) и разрежений (зеленый цвет) по векторам дрейфа при допустимой относительной ошибке α=0,5 (интервал времени 24 часа)

АТЛАС ПО ОКЕАНОГРАФИИ БЕРИНГОВА, ОХОТСКОГО И ЯПОНСКОГО МОРЕЙ

(ТОИ ДВО РАН) http://pacificinfo.ru/data/cdrom/2/HTML/5_02_09.htm

Охотское море по характеру и величине приливов является одним из наиболее интересных и сложных районов Мирового океана.

В Охотском море имеются приливы всех типов, каждый из них охватывает обширные акватории и характеризуется значительными величинами прилива.

В Сахалинском заливе и к северу от него, а также во всей юго-западной части Охотского моря наблюдаются почти исключительно неправильные суточные и суточные приливы.

> *Тихончук, Елена Александровна.

Приливной и ветровой дрейф льда и деформации ледяного покрова на северо-восточном шельфе о. Сахалин : Дис. ... канд. физ.-мат. наук : 25.00.29. - Южно-Сахалинск: РГБ, 2006.

Особенности дрейфа льда в прибрежной зоне, связанные с влиянием приливов, и в еще большей степени обусловленные ими деформации ледяного покрова являются сравнительно малоизученными вопросами *

Банка Кашеварова в Охотском море

*Тихончук, Елена Александровна. Приливной и ветровой дрейф льда и деформации ледяного покрова на северо-восточном шельфе о. Сахалин : Дис. ... канд. дрейфа, а процесса сжатия - северофиз.-мат. наук : 25.00.29. - Южно-Сахалинск: РГБ, 2006.

В центре Охотского моря, между Сахалином и Камчаткой, располагается вытянутое на 200 километров поднятие дна - банка Кашеварова.

Высокие скорости дрейфа льда в рассматриваемом районе в значительной мере обусловлены влиянием суточных приливов Суточный ритм прилива проявляется значительно сильнее полусуточного Скорость приливного течения в районе банки Кашеварова изменяется от 0,1 до 1,7 метров в секунду в зависимости от времени суток и склонения Луны.

Выявлена значительная пространственная неоднородность приливного дрейфа льда.

Максимальное разрежение происходит во время отлива, максимальное сжатие - во время прилива.

В большинстве случаев наличие процесса растяжения соответствует южному и юговосточному направлениям скорости западному. *

Ветер у Банка Кашеварова 3-5 марта 2016

2016/03/05 GCOM-W/AMSR2 [Okhotsk] 89GHz Polalization Ratio(PR89)

Сжатия за 4 марта 2016 интервал времени ∆t < 2:00

Сжатия за 4 марта 2016 интервал времени ∆t < 7: 00

3:41:20

11:31:58

3:41:20 3 5 9:56:52

 $\Delta t = 6:15:32$

∆t = 6:09:35 17:41:33 400 350 0.16-0.46 м/с 300 250 200 150 536186063,. ,688186063, 0,384186063 460186063 612186063 (0,232186063 0,308186063 0,764186063 840186063 0,916186063 992186063 1,144186063 (0,15618606

11:31:58

6

Сжатия за 4 марта 2016 интервал времени ∆t < 14:00

6:52:50

9:56:52 23:48:40

9:56:52

11:31:58

Фрагмент сжатия в марте 2016 около банки Кашеварова

Наблюдается хорошее количественное соответствие визуальной картины и результатов автоматического расчета сжатия\разрежения льда.

Картина сжатия \разрежения в течение некоторого времени демонстрирует физичность сжатия \разрежения льда, когда используются квазимгновенные сжатия, рассчитанные по двум изображениям с интервалом времен около 1.5 часов.

Банка Кашеварова -сложный район, т.к. в одном месте разные типы приливов – от полусуточных до суточных, правильных и неправильных. Чтобы интерпретировать расчетные сжатия\разрежения льда на банке Кашеварова при других расчетных временных интервалах скорости дрейфа - необходимо предварительно определить границы с разными приливными характеристиками.

Спасибо за внимание!